Abstract

Functional tunability, environmental adaptability, and easy fabrication are highly desired properties in metasurfaces. Here we provide a tunable bilayer metasurface composed of two stacked identical dielectric magnetic mirrors. The magnetic mirrors are excited by the interaction between the interference of multipoles of each cylinder and the lattice resonance of the periodic array, which exhibits nonlocal electric field enhancement near the interface and high reflection. We achieve the reversible conversion between high reflection and high transmission by manipulating the interlayer coupling near the interface between the two magnetic mirrors. Controlling the interlayer spacing leads to the controllable interlayer coupling and scattering of meta-atom. The magnetic mirror effect boosts the interlayer coupling when the interlayer spacing is small. Furthermore, the high transmission of the bilayer metasurface has good robustness due to the meta-atom with interlayer coupling can maintain scattering suppression against positional perturbation. This work provides a straightforward method to design tunable metasurface and sheds new light on high-performance optical switches applied in communication and sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.