Abstract

In this paper, tunable microstrip bandpass filters with two adjustable transmission poles and compensable coupling are proposed. The fundamental structure is based on a half-wavelength (λ/2) resonator with a center-tapped open-stub. Microwave varactors placed at various internal nodes separately adjust the filter's center frequency and bandwidth over a wide tuning range. The constant absolute bandwidth is achieved at different center frequencies by maintaining the distance between the in-band transmission poles. Meanwhile, the coupling strength could be compensable by tuning varactors that are side and embedding loaded in the parallel coupled microstrip lines (PCMLs). As a demonstrator, a second-order filter with seven tuning varactors is implemented and verified. A frequency range of 0.58-0.91 GHz with a 1-dB bandwidth tuning from 115 to 315 MHz (i.e., 12.6%-54.3% fractional bandwidth) is demonstrated. Specifically, the return loss of passbands with different operating center frequencies can be achieved with same level, i.e., about 13.1 and 11.6 dB for narrow and wide passband responses, respectively. To further verify the etch-tolerance characteristics of the proposed prototype filter, another second-order filter with nine tuning varactors is proposed and fabricated. The measured results exhibit that the tunable fitler with the embedded varactor-loaded PCML has less sensitivity to fabrication tolerances. Meanwhile, the passband return loss can be achieved with same level of 20 dB for narrow and wide passband responses, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call