Abstract
N-polar AlGaN is an emerging wide-bandgap semiconductor for next-generation high electron mobility transistors and ultraviolet light emitting diodes and lasers. Here, we demonstrate the growth and characterization of high-quality N-polar AlGaN films on C-face 4H-silicon carbide (SiC) substrates by molecular beam epitaxy. On optimization of the growth conditions, N-polar AlGaN films exhibit a crack free, atomically smooth surface (rms roughness ∼ 0.9 nm), and high crystal quality with low density of defects and dislocations. The N-polar crystallographic orientation of the epitaxially grown AlGaN film is unambiguously confirmed by wet chemical etching. We demonstrate precise compositional tunability of the N-polar AlGaN films over a wide range of Al content and a high internal quantum efficiency ∼74% for the 65% Al content AlGaN film at room temperature. Furthermore, controllable silicon (Si) doping in high Al content (65%) N-polar AlGaN films has been demonstrated with the highest mobility value ∼65 cm2/V-s observed corresponding to an electron concentration of 1.1 × 1017 cm−3, whereas a relatively high mobility value of 18 cm2/V-s is sustained for an electron concentration of 3.2 × 1019 cm−3, with an exceptionally low resistivity value of 0.009 Ω·cm. The polarity-controlled epitaxy of AlGaN on SiC presents a viable approach for achieving high-quality N-polar III-nitride semiconductors that can be harnessed for a wide range of emerging electronic and optoelectronic device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.