Abstract

AbstractGyroscopic metamaterials, mechanical structures composed of interacting spinning tops, have recently been found to support one-way topological edge waves. In these structures, the time-reversal symmetry breaking that enables their topological behavior emerges directly from the lattice geometry. Here we show that variations in the lattice geometry can give rise to more complex band topology than has been previously described. A “spindle” lattice (or truncated hexagonal tiling) of gyroscopes possesses both clockwise and counterclockwise edge modes distributed across several band gaps. Tuning the interaction strength or twisting the lattice structure along a Guest mode opens and closes these gaps and yields bands with Chern numbers of |C| > 1 without introducing next-nearest-neighbor interactions or staggered potentials. A deformable honeycomb structure provides a simple model for understanding the role of lattice geometry in constraining the effects of time-reversal symmetry and inversion symmetry breaking. Last, we find that topological band structure generically arises in gyroscopic networks, and a simple protocol generates lattices with topological excitations.KeywordsTopological materialsMetamaterialsPhononsChern insulatorsPhase transitionsGyroscopesLattices

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.