Abstract

Using first-principles calculations combined with a semiempirical van der Waals dispersion correction, we have investigated structural parameters, mixing enthalpies, and band gaps of buckled and planar few-layer InxGa1–xN alloys. We predict that the band gaps of buckled InxGa1–xN alloys with hydrogen passivation can be tuned from 5.6 to 0.7 eV with preservation of direct band gap and well-defined Bloch character, making them promising candidate materials for future light-emitting applications. Unlike that in their bulk counterparts, the phase separation could be suppressed in these two-dimensional systems because of reduced geometrical constraints. The disordered planar thin films undergo severe lattice distortion, nearly losing the Bloch character for valence bands, whereas the ordered planar ones maintain the Bloch character yet with the highest mixing enthalpies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call