Abstract

Electrically induced birefringence is studied in photonic bi-oriented crystals in terms of molding lightflow in optical devices. In photonic bi-oriented crystals, misorientation of dielectric anisotropic grains results in a dielectric contrast at the grain boundaries. The translational periodicity of the optical constants depends upon a regular network of twisted dielectrics. Due to the anisotropy of the bicrystalline structure the direction of light propagation determines the dielectric contrast at the grain boundaries. In a specific crystallographic arrangement the optical properties of the bi-oriented crystal can be tuned by the electro-optical effect: the periodic dielectric contrast is electrically induced and photonic bandgaps are generated by applying external electric fields. The geometrical requirements for tunable photonic bicrystals are evaluated based on materials employed for electro-optical applications. Tunable photonic bi-oriented crystals may be candidates for fast optical switches, modulators and multiplexers in the optical communication network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.