Abstract

We report on the optical characterization of semicontinuous nanostructured silver films exhibiting tunable optical reflectance asymmetries. The films are obtained using a multi-step process, where a nanocrystalline silver film is first chemically deposited on a glass substrate and then subsequently coated with additional silver via thermal vacuum-deposition. The resulting films exhibit reflectance asymmetries whose dispersions may be tuned both in sign and in magnitude, as well as a universal, tunable spectral crossover point. We obtain a correlation between the optical response and charge transport in these films, with the spectral crossover point indicating the onset of charge percolation. Such broadband, dispersion-tunable asymmetric reflectors may find uses in future light-harvesting systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call