Abstract

Subcellular events such as trafficking and signaling are regulated by self-assembled protein complexes inside the cell. The ability to rapidly and reversibly manipulate these protein complexes would likely enhance studies of their mechanisms and their roles in biological function and disease manifestation.[1, 2] This manuscript reports that thermally-responsive elastin-like polypeptides (ELPs) linked to fluorescent proteins can regulate the self-assembly and disassembly of protein microdomains within the individual cells of zebrafish embryos. By exploring a library of fluorescent ELP proteins, this reports demonstrates that ELPs can co-assemble different fluorescent proteins inside of embryos. By tuning ELP length and sequence, fluorescent protein microdomains can be assembled at different temperatures, in varying sizes, or for desired periods of time. For the first time in a multicellular living embryo, these studies demonstrate that temperature-mediated ELP assembly can reversibly manipulate assembly of subcellular protein complexes, which may have applications in the study and manipulation of in vivo biological functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.