Abstract

Assembling colloidal particles using site-selective directional interactions into predetermined colloidal superlattices with desired properties is broadly sought after, but challenging to achieve. Herein, we exploit regioselective depletion interactions to engineer the directional bonding and assembly of non-spherical colloidal hybrid microparticles. We report that the crystallization of a binary colloidal mixture can be regulated by tuning the depletion conditions. Subsequently, we fabricate triblock biphasic colloids with controlled aspect ratios to achieve regioselective bonding. Without any surface treatment, these biphasic colloids assemble into various colloidal superstructures and superlattices featuring optimized pole-to-pole or centre-to-centre interactions. Additionally, we observe polymorphic crystallization, quantify the abundancy of each form using algorithms we developed and investigate the crystallization process in real time. We demonstrate selective control of attractive interactions between specific regions on an anisotropic colloid with no need of site-specific surface functionalization, leading to a general method for achieving colloidal structures with yet unforeseen arrangements and properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call