Abstract

The self-assembly of gold nanoparticles (AuNPs) into thin films at the liquid-liquid interface has promising applications in industries such as catalysis, optics, and sensors. However, precise control over their formation is complex, influenced by several factors which scale differently with core size. Due to their small free energy of adsorption, there are few examples of AuNPs with core diameters <10 nm. The present research evaluates the adsorption of ∼3 nm AuNPs from either side of the oil-aqueous interface with variations in ligand shell composition, the oil phase composition, and the structure of alcohol additives to best drive thin-film formation. Film formation and quality are evaluated, and a recent thermodynamic model is used to gain insight into the primary forces promoting this adsorption. Results demonstrate that longer-chain alcohol additives (namely, n-butanol and n-hexanol) induced adsorption more efficiently than shorter-chain alcohols (ethanol). The volume of alcohol additive needed to induce adsorption was dependent upon the ligand composition, suggesting that the mechanism for induced interfacial adsorption is via interaction with the AuNP ligand shell. Comparison with the thermodynamic model indicates that the driving force for this induced adsorption is the alteration of the three-phase contact angle. Additionally, the use of various oils demonstrates that as oil-water interfacial tension increases, more AuNPs adsorb to the interface. This relationship is also supported by the model. Insight gained for favorable conditions of adsorption for AuNPs < 10 nm as well as the underlying thermodynamic mechanism is important in working toward the ability to fine-tune such films for industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call