Abstract

AbstractMaterial designs for wearable sensors are increasingly important due to variable application scenarios and environmental disturbances. The high temperatures pose a significant challenge to the performance of sensing materials. The reasonable anisotropic structure in materials is recognized as a promising approach to address this challenge. Precise control of the orientation of the material remains difficult, owing to the entropy effect. In this work, a tunable anisotropic triboelectric aerogel via an in situ coupled magnetic alignment and protonation reduction strategy is demonstrated. The designed orientation with a fitting degree of 98% can effectively suppress electron thermionic emission, which enables the surface charge density to reach 75 µC m−2 at 300 °C. Such a perfect coordination between self‐powered sensing and thermostability innovates multifunctional wearable sensing design at high temperatures, allowing aramid‐based aerogel to be a candidate for advanced sensing materials for applications in the military and aerospace fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call