Abstract

We numerically study disorder effects in the Bernevig-Hughes-Zhang (BHZ) model, and we find that the Anderson transition of a quantum spin-Hall insulator (QSHI) is determined by model parameters. The BHZ Hamiltonian is equivalent to two decoupled spin blocks that belong to the unitary class. In contrast to the common belief that a two-dimensional unitary system scales to an insulator except at certain critical points, we find, through calculations scaling properties of the localization length, level statistics, and participation ratio, that a possible exotic metallic phase emerges between the QSHI and normal insulator phases in the InAs/GaSb-type BHZ model. On the other hand, direct transition from a QSHI to a normal insulator is found in the HgTe/CdTe-type BHZ model. Furthermore, we show that the metallic phase originates from the Berry phase and can survive both inside and outside the gap.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call