Abstract
A novel, to the best of our knowledge, Tm,Ho:GdScO3 crystal grown using the Czochralski method was investigated for its polarized spectroscopic properties and laser performance in both tunable continuous-wave (CW) and mode-locked regimes. The crystal's multisite structure (Gd3+/Sc3+ site) and Tm3+/Ho3+ dopants contributed to spectral broadening, enabling a tunable laser operation from 1914 to 2125 nm (with a broad range of 215 nm). Additionally, a pulse duration of 72 fs was achieved for E || b polarization. These results demonstrate the potential of the Tm,Ho:GdScO3 perovskite crystal as a promising gain material for ultrafast lasers operating around 2 µm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.