Abstract

Ferrimagnets perform versatile properties, attributed to their antiferromagnetic sublattice coupling and finite net magnetization. Despite extensive research, the inhomogeneous dynamics in ferrimagnets, including domain walls and magnons, remain not fully understood. Therefore, we adopted a multi-spin model by considering the effect of the spin torques and explored the localized phase-dependent and inhomogeneous THz-oscillation dynamics in a ferrimagnetic spin-chain. Our results demonstrate that the exchange oscillation mode, induced by spin transfer torque, exhibits three typical phases, and the oscillation frequency is dominated by a joint effective field derived in the spin-chain. We also found that the localized spin configurations can be used to tune the bandwidth and sensitivity of the frequency response. Furthermore, we propose an anti-parallel exchange length to reveal the inhomogeneity in the ferrimagnetic spin-chain, which could serve as a valuable tool for characterizing the spin dynamics of these systems. Our findings offer understandings beyond uniform spin-dynamics in ferrimagnets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.