Abstract
Hyaluronic acid-based hydrogels have been broadly used in medical applications due to their remarkable properties such as biocompatibility, biodegradability, super hydroscopicity, non-immunogenic effect, etc. However, the inherent weak and hydrophilic polysaccharide structure of pure hyaluronic acid (HA) hydrogels has limited their potential use in muco-adhesiveness, wound dressing, and 3D printing. In this research, we developed in-situ forming of catechol-modified HA hydrogels with improved mechanical properties involving blue-light curing crosslinking reaction. The effect of catechol structure on the physicochemical properties of HA hydrogels was evaluated by varying the content (0–40 %). The as-synthesized hydrogel demonstrated rapid prototyping, excellent wetting adhesiveness, and good biocompatibility. Furthermore, an optimized hydrogel precursor solution was used as a blue light-cured bio-ink with high efficiency and good precision and successfully prototyped a microstructure that mimicked the human hepatic lobule by using DLP 3D printing method. This catechol-modified HA hydrogel with tunable physicochemical and rapid prototyping properties has excellent potential in biomedical engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.