Abstract

PbS nanoplatelets (NPLs) are proposed as robust materials for novel optoelectronic devices. Compared to quantum dot assemblies, ab initio simulations are employed to show that such pseudo-two-dimensional systems may provide stronger absorption and higher carrier mobility due to the distinct wave function distributions, large electronic couplings, and small hopping barriers. More importantly, both energetic and spatial traps are absent in conditions far from charge balance, indicating an extraordinary robustness against off-stoichiometry as a result of surface homogeneity and sufficient cross-linking. Based on our findings, we present several types of optoelectronic device architectures spanning photovoltaics and photodetectors that could take advantage of the superior properties found in NPLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.