Abstract
MXene, especially Ti3C2Tx, is attracting extensive attention as an absorbing material owing to its strong dielectric loss and tunable structure. Nevertheless, extremely high conductivity and non-magnetic loss mechanism limit the absorbing intensity and effective absorption bandwidth (EAB). Herein, the magnetic ZnFe2O4 nanoparticles decorated Ti3C2Tx MXene composite is designed and synthesized by using a facile in-situ solvothermal method. The novel ZnFe2O4@Ti3C2Tx-2 (1:2) composite shows an optimal reflection loss of −60.94 dB and a wide EAB of 6.08 GHz at a matching thickness of only 1.75 mm. The mechanism analysis reveals that the synergetic electromagnetic loss effect, interfacial polarization, dipole polarization, and laminated structure contribute to improving the microwave absorption (MA) performance. Furthermore, to confirm the use capability of the ZnFe2O4@Ti3C2Tx sample coatings in practical applications, the radar cross-section (RCS) reduction performance has been proved through using computer simulation technology (CST). With the detection theta of 0°, the ZnFe2O4@Ti3C2Tx-2 sample coating possesses the largest RCS reduction value of 22.83 dB. This work lays the foundation for the rational design of high-performance absorbing materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.