Abstract

Low-dimensional hybrid metal halide (LDHMH) materials have attracted considerable attention owing to their intriguing optical properties. To the best of the knowledge, this is the first study to successfully demonstrate both self-trap exciton (STE) and afterglow emissions in Zr-based LDHMH materials. The obtained pure (Ph3 S)2 ZrCl6 crystals showed near-ultraviolet phosphorescence and a green afterglow owing to the organic cation Ph3 S+ , while the Bi-doped and Sb-doped crystals exhibited both STE and afterglow emissions. However, the Te-doped crystals showed only a broad yellow STE emission owing to the [TeCl6 ]2- octahedron. In addition, all the crystals showed good stability. Notably, Sb-doped crystals produced white light, which can be adjusted between cold white and warm white using different excitations. Finally, this strategy for both STE and afterglow emissions can be applied to other LDHMH materials for optical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call