Abstract

AbstractThis paper presents a tunable planar auxetic metamaterial (PAM) for controlling and filtering acoustic waves and provides guidelines for bandgap design of the proposed PAMs. Numerical results for deformed and undeformed PAMs were obtained from several finite element analyses based on Bloch–Floquet theory. The acoustic band structures of the PAMs were calculated with periodic boundaries. Tunable bandgaps in certain frequency ranges were generated by various deformations applied to the PAMs. Wave attenuation in experimental transmission loss at specific frequencies was demonstrated, showing favorable agreement with the bandgaps obtained from numerical calculations. Both the numerical and experimental results indicate that the proposed structure demonstrates great tunability and offers significant advantages over the regular materials for controlling sound wave propagation and filtering sound waves within specific frequency ranges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.