Abstract

We investigate the radiation of the THz natural waves of the dielectric waveguide with graphene plane scattered by finite number of graphene strips. Our mathematically accurate analysis uses the singular integral equations method. The discretization scheme employs the Nystrom-type algorithm. The complex-valued propagation constants of the natural waves and corresponding fields are determined numerically from the equation, which also involves the kernel-function of the singular integral equation. The method we use is meshless and full-wave. The convergence is provided by the mathematical theorems. By varying the chemical potential of graphene and structural geometrical parameters, we examine the elevation angle of the main lobe of the radiation pattern and the radiated power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call