Abstract

Semiconducting polymers are currently being considered as active layers in field-effect transistors, in which high charge carrier mobility and low off conductivity are important. For other applications, such as certain spintronic mechanisms, the opposite characteristics are desirable. Blending such polymers with insulating polymers would be expected to lower the mobility. In this paper, we report that the use of hydrocarbon polymers such as polystyrene as insulators generally raises the mobility when the semiconducting polymer is poly(bisdodecylquaterthiophene). A high mobility value of nearly 0.1 cm(2)/V.s was obtained for an optimal blend. While this is counterintuitive, it is consistent with a few other recent reports. In order to lower the mobility significantly, a much more polar and irregular blending agent is needed. The further addition of tetrafluorotetracyanoquinodimethane as a dopant gave a rare low mobility/high conductivity combination of properties, with a charge carrier density on the order of 10(19) cm(-3). Thus, mobility and conductivity were tuned somewhat independently over 3 and 4 orders of magnitude, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.