Abstract
Electronic excitation transfer dynamics in photosynthetic systems, including the Fenna-Matthews-Olson complex, are often modeled using the interaction picture of three two-level systems, also known as the 3-site system. Among the two possible configurations, uphill and downhill, a recent publication reported an intriguing correlation between population dynamics and the intersite coupling. Specifically, the uphill configuration has been shown to have a pronounced dependence on perturbations in the intersite coupling, whereas the downhill configuration displays negligible dependence. In this study, we consider a generic 3-site configuration and model site interactions through the Markovian master equation. Through this approach, we derive succinct analytical expressions for the population dynamics between the sites, shedding light on the differences in behavior between the two configurations. Using these analytical expressions, we demonstrate the range of tunability in population dynamics achievable with minimal changes in intersite coupling, and we validate these findings through simulation results. These insights into the population dynamics of a 3-site system are expected to play a crucial role in facilitating the design of efficient energy-transfer pathways in molecular systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.