Abstract

Cancer is a disease mainly caused by somatic genome alterations (SGAs) that perturb cellular signalling systems. Furthermore, the combination of pathway aberrations in a tumour defines its disease mechanism, and distinct disease mechanisms underlie the inter-tumour heterogeneity in terms of disease progression and responses to therapies. Discovering common disease mechanisms shared by tumours would provide guidance for precision oncology but remains a challenge. Here, we present a novel computational framework for revealing distinct combinations of aberrant signalling pathways in tumours. Specifically, we applied the tumour-specific causal inference algorithm (TCI) to identify causal relationships between SGAs and differentially expressed genes (DEGs) within tumours from the Cancer Genome Atlas (TCGA) study. Based on these causal inferences, we adopted a network-based method to identify modules of DEGs, such that the member DEGs within a module tend to be co-regulated by a common pathway. Using the expression status of genes in a module as a surrogate measure of the activation status of the corresponding pathways, we divided breast cancers (BRCAs) into five subgroups and glioblastoma multiformes (GBMs) into six subgroups with distinct combinations of pathway aberrations. The patient groups exhibited significantly different survival patterns, indicating that our approach can identify clinically relevant disease subtypes.

Highlights

  • Distinct members of the pathway[9]

  • The edge weight is proportional to the number of tumours in which the pair were co-regulated by a common driver SGA

  • We designed a novel computational framework, which utilizes the causal inferences between SGAs and differentially expressed genes (DEGs) for constructing expression and signalling state representations, in the form of modules of DEGs that reflect the major transcriptomic programs that are perturbed in a cancer type

Read more

Summary

Introduction

Distinct members of the pathway[9]. For example, the phosphoinositide 3-kinase (PI3K) pathway can be aberrantly activated by mutation/amplification of PIK3CA, mutation/deletion of PTEN, or mutation of AKT111,12, and so on. This enables us to use the expression status of a DEG module as a surrogate measure of the aberration status of pathways regulating its expression, which further allows us to represent a tumour as a vector in pathway space that reflects the combination of pathway aberrations in the tumour With these pathway representative feature vectors, we identify subgroups of tumours sharing similar aberration patterns that exhibit different survival outcomes. We evaluated this computational framework on breast cancer (BRCA) and glioblastoma multiformes (GBM) data, and we report the results here. The same approach can be applied to other cancer types, with minor modification

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call