Abstract
Intraperitoneal endotoxin injection and central administration of interleukin (IL)-1beta profoundly activate hippocampal serotonergic neurotransmission. This study was designed to investigate, using in vivo microdialysis, the effects of another endotoxin-induced proinflammatory cytokine, tumour necrosis factor-alpha, and the effects of the non-inflammatory cytokine, IL-2, on hippocampal extracellular levels of serotonin. To compare the effects of these cytokines on neurotransmission with the effects on physiological parameters and behaviour, hypothalamic-pituitary-adrenocortical (HPA) axis activity, body temperature and behavioural activity were monitored as well. Time-dependent changes in serotonergic neurotransmission and HPA axis activity were determined by measuring serotonin, its metabolite 5-hydroxyindoleacetic acid and free corticosterone in dialysates. Total behavioural activity was scored by assessing the time during which rats were active. Core body temperature was measured by biotelemetry. Intracerebroventricular injection of 50 or 100 ng recombinant murine tumour necrosis factor-alpha exerted no effect on hippocampal serotonergic neurotransmission, and induced no signs of sickness behaviour. However, these doses produced a dose-dependent increase in body temperature and free corticosterone levels. In contrast, intracerebroventricular administration of 500 ng, but not of 50 ng, recombinant human IL-2 produced a marked increase in hippocampal extracellular concentrations of serotonin and 5-hydroxyindoleacetic acid, accompanied by a pronounced behavioural inhibition and other signs of sickness. Moreover, both doses of IL-2 caused a dose-dependent increase in body temperature and free corticosterone levels. Interestingly, intracerebroventricular pretreatment with the IL-1 receptor antagonist showed that the effects of IL-2 on hippocampal serotonin were completely dependent on endogenous brain IL-1. However, IL-1 seemed to play only a minor role in the IL-2-induced increase in free corticosterone. Taken together, the results show that cytokines produce partially overlapping brain-mediated responses, but are selectively effective in stimulating hippocampal serotonergic neurotransmission and inducing sickness behaviour. Moreover, we postulate that activation of hippocampal serotonin release is instrumental in the full development of behavioural inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.