Abstract

Although loss of cell-cell adhesion and gain of invasive properties play a crucial role in the malignant progression of epithelial tumours, the molecular signals that trigger these processes have not been fully elucidated. In light of the well-established relationship between chronic inflammation and cancer, we hypothesized that pro-inflammatory cytokines disrupt epithelial-cell adhesion and promote cell migration. To test this hypothesis, we used an in vitro model in which 31EG4-2A4 mouse mammary epithelial cells grown in a collagen gel form compact spheroidal colonies. Among the several cytokines examined, tumour necrosis factor alpha (TNF-alpha) caused a pronounced 3D scattering of preformed epithelial-cell colonies and induced 31EG4-2A4 cells grown on top of a collagen gel to invade the underlying matrix. In addition, TNF-alpha abolished contact-mediated inhibition of cell proliferation and stimulated cell growth both in the absence of exogenous mitogens and under anchorage-independent conditions. TNF-alpha induced the expression of matrix metalloproteinase 9 (MMP-9). Addition of the MMP inhibitor BB-94 abrogated TNF-alpha-induced 3D scattering. TNF-alpha also enhanced the attachment of 31EG4-2A4 cells to type-I collagen and markedly increased the expression of the alpha2 integrin subunit. Addition of a blocking antibody to beta1-integrin or of rhodocetin (a specific alpha2beta1 antagonist) to collagen-gel cultures abrogated 3D scattering. Collectively, these results demonstrate an essential role for MMPs and alpha2beta1 integrin in the invasive response of 31EG4-2A4 cells to TNF-alpha. We propose that the biological activities described in this study contribute to the ability of TNF-alpha to promote tumour progression and cancer-cell dissemination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call