Abstract
Human monoclonal IgM antibodies reactive with cancer-associated antigens may not have the optimal imaging capability due to their large size. Fragmentation of human IgM is less than straight-forward due to the loss of immunoreactivity. From the human monoclonal IgM antibody COU-1 we have prepared monomeric and half-monomeric fragments, which retain the ability to bind to colon cancer cells in vitro. The pharmacokinetics and tumour localization were evaluated in nude mice bearing human colon adenocarcinoma and human melanoma grafts. Faster clearance from the circulation was seen for the smaller half-monomeric fragment with a half-life (rapid phase/slow phase) of 2 h/16 h compared with the intact antibody, 4 h/25 h, and the monomeric fragment, 3 h/27 h. Intact COU-1 as well as the fragments accumulated in the colon tumour graft. Higher amounts of radioactivity were found in the colon tumour as compared to normal organs for intact COU-1 at days 4 and 6, for the monomeric fragment at day 4, and for the half-monomeric fragment at day 2 after injection. This investigation demonstrates the favourable biodistribution of the half monomeric COU-1 fragment. The fast clearance of this fragment resulted in a tumour-to-muscle ratio as high as 22 on day 2 after injection. Also, only this fragment gave a positive tumour-to-blood ratio. Normal IgM and its fragments were used as controls. Radioimmunoscintigraphy demonstrated the colon tumour discriminatory properties of each of the three iodine-labelled antibody preparations.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.