Abstract

Cell-penetrating peptides have gained attention owing to their promise in noninvasive delivery systems. Among the identified cell-penetrating peptides, the TAT peptide has been preferentially used for transduction into cells of diverse origins. However, this activity is nonselective between neoplastic and non-neoplastic cells. Here we describe artificial cell-penetrating peptides that are selectively and efficiently incorporated into human tumour cells, according to their lineage. Ten representative tumour lineage-homing cell-penetrating peptides were obtained by screening of a random peptide library constructed using messenger RNA display technology, and some of the isolates were further modified by amino-acid substitution. Their advantageous tumour cell-targeting ability is corroborated in an in vivo mouse model for imaging and growth suppression of metastatic xenoplant tumours. These cell-penetrating peptides are potentially useful for the efficient targeting of human neoplasms in a tumour origin-dependent manner, and provide a framework for the development of peptide-based anti-tumour technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.