Abstract

Bone metastasis is a lethal and morbid late stage of breast cancer that is currently treatment resistant. More effective mouse models and treatment are necessary. High bone-metastatic variants of human breast cancer cells were selected in nude mice by cardiac injection. After cardiac injection of a high bone-metastatic variant of breast cancer, all untreated mice had bone metastases compared to only 20% with parental cells. Treatment with tumor-targeting Salmonella typhimurium A1-R completely prevented the appearance of bone metastasis of the high metastatic variant in nude mice (P < 0.001). After injection of the highly bone-metastatic breast cancer variant to the tibia of nude mice, S. typhimurium A1-R treatment significantly reduced tumor growth in the bone (P < 0.001). These data indicated that S. typhimurium A1-R is useful to prevent and inhibit breast cancer bone metastasis and should be of future clinical use for breast cancer in the adjuvant setting.

Highlights

  • Bone metastasis is found in more than 80% of patients in advanced stages of breast cancer [1] and is highly treatment resistant and results in extreme pain and high mortality

  • We have shown that S. typhimurium A1-R can target chemo-resistant pancreatic cancer stem-like cells [16] and pancreatic cancer patient-derived orthotopic xenograft (PDOX) models [17,18,19]

  • Typhimurium A1-R can prevent human breast cancer bone metastasis using a metastatic variant in nude mouse models

Read more

Summary

Introduction

Bone metastasis is found in more than 80% of patients in advanced stages of breast cancer [1] and is highly treatment resistant and results in extreme pain and high mortality. Typhimurium A1-R can prevent human breast cancer bone metastasis using a metastatic variant in nude mouse models. Fluorescence imaging demonstrated that S. typhimurium A1-R expressing GFP selectively invaded and replicated intracellularly in the MDA-MB-435 cells expressing RFP (Fig. 1a). After injection of S. typhimurium A1-R (5×107 CFU, i.v.) to non-tumor-bearing nude mice, blood, spleen, and bone marrow were cultured on Luria-Bertani (LB) agar (Fig. 2a).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.