Abstract
The presence of tumor-infiltrating lymphocytes (TILs) is associated with a favorable prognosis of primary melanoma (PM). Recently, artificial intelligence (AI)-based approach in digital pathology was proposed for the standardized assessment of TILs on hematoxylin and eosin-stained whole slide images (WSIs). Herein, the study applied a new convolution neural network (CNN) analysis of PM WSIs to automatically assess the infiltration of TILs and extract a TIL score. A CNN was trained and validated in a retrospective cohort of 307 PMs including a training set (237 WSIs, 57,758 patches) and an independent testing set (70 WSIs, 29,533 patches). An AI-based TIL density index (AI-TIL) was identified after the classification of tumor patches by the presence or absence of TILs. The proposed CNN showed high performance in recognizing TILs in PM WSIs, showing 100% specificity and sensitivity on the testing set. The AI-based TIL index correlated with conventional TIL evaluation and clinical outcome. The AI-TIL index was an independent prognostic marker associated directly with a favorable prognosis. A fully automated and standardized AI-TIL appeared to be superior to conventional methods at differentiating the PM clinical outcome. Further studies are required to develop an easy-to-use tool to assist pathologists to assess TILs in the clinical evaluation of solid tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.