Abstract

BackgroundThe suppressive nature of immune cells in the tumor microenvironment plays a major role in regulating anti-tumor immune responses. Our previous work demonstrated that a soluble factor from tumor cells is able to induce a suppressor phenotype (SP) in human CD8+ T cells typified by loss of CD27/CD28 expression and acquisition of a potent suppressor function. The present study hypothesized that the soluble mechanism that is inducing the SP in CD8+ T cells are tumor-derived exosomes (TDEs).MethodsMembrane vesicles and TDEs from multiple head and neck cancer cell line’s conditioned growth media were isolated by ultracentrifugation and precipitation, respectively. Human purified CD3+CD8+ T cells were assessed for their induction of the T cell SP by flow cytometry identifying loss of CD27/CD28 expression and in vitro suppression assays. Furthermore, the T cell SP was characterized for the attenuation of IFN-γ production. To delineate exosomal proteins contributing to T cell SP, mass spectrometry was used to identify unique proteins that were present in TDEs. CRISPR/Cas9 knockout constructs were used to examine the role of one of these proteins, galectin-1. To assess the role of exosomal RNA, RNA purified from TDEs was nucleofected into CD8+ T cells followed by suppression analysis.ResultsUsing fractionated conditioned growth media, factors >200 kDa induced CD8+ T cell SP, which was determined to be an exosome by mass spectrometry analysis. Multiple head and neck cancer-derived cell lines were found to secrete T cell SP-inducing exosomes. Mass spectrometry analysis revealed that an immunoregulatory protein, galectin-1 (Gal-1), was expressed in those exosomes, but not in TDEs unable to induce T cell SP. Galectin-1 knockout cells were found to be less able to induce T cell SP. Furthermore, RNA purified from the T cell SP-inducing exosomes were found to partially induce the SP when transfected into normal CD8+ T cells.ConclusionsFor the first-time, TDEs have been identified to induce a SP in CD8+ T cells and their mode of action may be synergistic effects from exosomal proteins and RNA. One protein in particular, galectin-1, appears to play a significant role in inducing T cell SP. Therefore, tumor-derived immunosuppressive exosomes are a potential therapeutic target to prevent T cell dysfunction and enhance anti-tumor immune responses.

Highlights

  • The suppressive nature of immune cells in the tumor microenvironment plays a major role in regulating anti-tumor immune responses

  • Upon demonstrating uptake of tumor-derived exosomes (TDEs) by Suppressor T cells (Ts) cells, we further show that these dysfunction-causing exosomes are secreted by a number of different head and neck cancer cell lines, and contain unique proteins, including galectin-1(Gal-1), which is known to play a role in immune regulation

  • We lastly demonstrate that RNA purified from exosomes is able to induce the suppressor phenotype when transfected into normal donor CD8+ T cells indicating that there is more than one factor responsible for the dysfunctional processes induced by TDEs

Read more

Summary

Introduction

The suppressive nature of immune cells in the tumor microenvironment plays a major role in regulating anti-tumor immune responses. Recent studies have demonstrated that a large fraction of tumor-resident CD8+ T cells have phenotypic changes associated with exhaustion and dysfunction typified by the loss of expression of the immune co-receptors CD27 and CD28, as well as the expression of immune checkpoint inhibitor proteins such as programed death receptor 1 (PD-1), T cell immunoglobulin and mucin protein 3 (Tim-3), among many others [3,4,5]. The mechanism by which the cytotoxicity of tumorresident CD8+ T cells becomes blunted in the tumor microenvironment is incompletely understood, though it has been associated with the presence of significant populations of immune regulators including CD4+ regulatory T cells (Treg), and suppressive myeloid cells such as tumor-associated macrophages and myeloid-derived suppressor cells (MDSC) [9, 10]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.