Abstract
Sonic Hedgehog (SHH) subgroup of medulloblastoma (MB) accounts for about 25% of all subgroups of MB. Tumor microenvironment (TME) may play a key role in the tumor progression and therapeutic resistance. Tumor-associated astrocytes (TAAs) are reshaped to drive tumor progression through multiple paracrine signals. However, the mechanism by which TAAs modulate MB cells remains elusive. Here, we illuminated that TAAs showed a specific and dynamic pattern during SHH-MB development. Most TAAs gathered to the tumor margin during the tumor progression, rather than evenly distributed in the early-stage tumors. We further demonstrated that lipocalin-2 (LCN2) secreted by TAAs could promote the tumor growth and was correlated with the poor prognosis of MB patients. Knocking down LCN2 in TAAs in vitro impeded the proliferation and migration abilities of MB cells. In addition, we identified that TAAs accelerated the tumor growth by secreting LCN2 via STAT3 signaling pathway. Accordingly, blockade of STAT3 signaling by its inhibitor WP1066 and AAV-Lcn2 shRNA, respectively, in TAAs abrogated the effects of LCN2 on tumor progression in vitro and in vivo. In summary, we for the first time clarified that LCN2, secreted by TAAs, could promote MB tumor progression via STAT3 pathway and has potential prognostic value. Our findings unveiled a new sight in reprogramming the TME of SHH-MB and provided a potential therapeutic strategy targeting TAAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.