Abstract

Tumor-treating fields (TTFields) are currently a Category 1A treatment recommendation by the US National Comprehensive Cancer Center for patients with newly diagnosed glioblastoma. Although the mechanism of action of TTFields has been partly elucidated, tangible and standardized metrics are lacking to assess antitumor dose and effects of the treatment. This paper outlines and evaluates the current standards and methodologies in the estimation of the TTFields distribution and dose measurement in the brain and highlights the most important principles governing TTFields dosimetry. The focus is on clinical utility to facilitate a practical understanding of these principles and how they can be used to guide treatment. The current evidence for a correlation between TTFields dose, tumor growth, and clinical outcome will be presented and discussed. Furthermore, we will provide perspectives and updated insights into the planning and optimization of TTFields therapy for glioblastoma by reviewing how the dose and thermal effects of TTFields are affected by factors such as tumor location and morphology, peritumoral edema, electrode array position, treatment duration (compliance), array "edge effect," electrical duty cycle, and skull-remodeling surgery. Finally, perspectives are provided on how to optimize the efficacy of future TTFields therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.