Abstract

Co-delivery strategy using multifunctional nanocarriers is an attractive option for the synergistic and enhanced effects in cancer treatment, but one system integrating multiple functions for controlled release at the target is still challenging. Herein, this study shows the synthesis and characterization of our stimulus-responsive co-delivery system for the controlled release into tumors, which is composed of polyethylenimine (PEI)-linked Pluronic F127 (PF127) and folic acid (FA), called PF127-PEI-FA. PF127-PEI-FA system facilitated drug loading and gene complex formation, and showed controlled release behaviors in response to hitting temperature to hyperthermia. PF127-PEI-FA system was demonstrated to be biocompatible and showed receptor-mediated gene delivery. The results of our multifunctional nanocarrier system that enabled co-delivery suggest a promising potential for controlled drug release at targeted areas. However, further in-depth studies on the use of therapeutic drugs and genes in multiple cell types and the animal response are required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.