Abstract
Advanced colorectal cancer has a high mortality rate since conventional treatments have limited therapeutic effects and poor prognosis with high risks of metastasis and recurrence. Photodynamic therapy (PDT) is a promising treatment modality for the eradication of colorectal cancer, but its curative efficacy is severely affected by tumor hypoxia. Herein, we developed a core-shell gold nanocage coated with manganese dioxide and hyaluronic acid (AMH) for targeted delivery to colorectal tumors and oxygenation-boosted immunogenic phototherapy in situ. The AMH nanoparticles can generate abundant oxygen from mild acidic/H2O2 medium, which can further enhance the PDT efficacy of AMH itself under near infrared (NIR) irradiation. Meanwhile, AMH-based PDT induced immunogenic cell death (ICD) of tumor cells with damage-associated molecular patterns (DAMPs) release and facilitated the dendritic cells (DCs) maturation to further potentiate the systematic antitumor immunity against advanced tumors. In vivo experiment results exhibited that AMH nanoparticles not only had the ability of targeting tumor but also in situ produced sufficient oxygen to relieve the tumor hypoxia. Furthermore, AMH-mediated oxygen-boosted immunogenic PDT effectively inhibited the tumor growth and recurrence. Thus, this work provides a potent targeted delivery nanoplatform for enhanced immunogenic PDT against advanced cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.