Abstract

A novel albumin polymer hybrid with a core-shell structure was designed to target delivery of bufalin, which is an antineoplastic monomer with serious cardiotoxicity. The sheath layer was composed of ursodeoxycholic acid (UA)-modified bovine serum albumin (UA-BSA), while the stable core consisted of poly n-butyl cyanoacrylate (PBCA) nanoparticles. The UA-BSA was synthetized, and the substitution degree was characterized. The physical properties of bufalin-loaded UA-modified protein-PBCA nanocomplexes (BF-uPPNCs), such as morphology, particle size, and encapsulation efficiency, were evaluated. FTIR and DSC revealed the bufalin to be in an amorphous state. Furthermore, the in vitro release study indicated a sustained release profile of BF-uPPNCs. The MTT and cellular uptake study demonstrated that BF-uPPNCs significantly improved the inhibitory effect of the bufalin accompanied with an enhanced cell uptake capacity on HepG2 cells. In addition, in vivo research demonstrated that BF-uPPNCs had a better antitumor effect coupled with improved therapeutic effect, and reduced hemolysis, vascular irritation, and cardiotoxicity. This work therefore presented a novel albumin polymer hybrid with favorable stability, efficient tumor-targeted delivery potential, and side effect reduction ability, which can be a potential vehicle for an anticancer drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.