Abstract

XIAP-associated factor 1 (XAF1) antagonizes the anticaspase activity of XIAP (X-linked inhibitor of apoptosis) and functions as a tumor suppressor in colon cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known as a potential anticancer agent. In this study, the synergistic effect of XAF1 and TRAIL on colon cancer growth was investigated. Adeno-XAF1 virus was generated and purified. Cell apoptosis was detected by flow-cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Protein expression of the different genes was determined by Western blot analysis. Tumorigenesis and tumor growth were assessed in subcutaneous nude mouse xenograft experiments. Stable overexpression of XAF1-sensitized colon cancer cells to TRAIL-induced apoptosis significantly increased the activity of caspase 3, 7, 8, and 9; released cytochrome c; and down-regulated XIAP, survivin, and c-IAP-2. The restoration of XAF1 expression mediated by adenovirus (adeno-XAF1) directly induced apoptosis, and synergized TRAIL-induced apoptosis in colon cancer cells. Ex vivo transduction of adeno-XAF1 suppressed colon cancer formation in vivo. Furthermore, adeno-XAF1 treatment of mice significantly inhibited tumor growth, strongly enhanced TRAIL-induced apoptosis and antitumor activity in colon cancer xenograft models in vivo, and markedly prolonged the survival. Notably, the combined treatment with adeno-XAF1 and TRAIL completely eradicated the established tumors without detectable toxicity in normal tissue. The combined restoration of XAF1 expression and TRAIL treatment may be a potent strategy for colon cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call