Abstract

Ferroptosis is a unique iron-dependent form of non-apoptotic cell death characterized by devastating lipid peroxidation. Whilst growing evidence suggests that ferroptosis is a type of autophagy-dependent cell death, the underlying molecular mechanisms regulating ferroptosis are largely unknown. In this study, through an unbiased RNA-sequencing screening, we demonstrate the activation of a multi-faceted tumor-suppressor protein Par-4/PAWR during ferroptosis. Functional studies reveal that genetic depletion of Par-4 effectively blocks ferroptosis, whereas Par-4 overexpression sensitizes cells to undergo ferroptosis. More importantly, we have determined that Par-4-triggered ferroptosis is mechanistically driven by the autophagic machinery. Upregulation of Par-4 promotes activation of ferritinophagy (autophagic degradation of ferritin) via the nuclear receptor co-activator 4 (NCOA4), resulting in excessive release of free labile iron and, hence, enhanced lipid peroxidation and ferroptosis. Inhibition of Par-4 dramatically suppresses the NCOA4-mediated ferritinophagy signaling axis. Our results also establish that Par-4 activation positively correlates with reactive oxygen species (ROS) production, which is critical for ferritinophagy-mediated ferroptosis. Furthermore, Par-4 knockdown effectively blocked ferroptosis-mediated tumor suppression in the mouse xenograft models. Collectively, these findings reveal that Par-4 has a crucial role in ferroptosis, which could be further exploited for cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.