Abstract

Bromodomain-containing protein 7 (BRD7), which is a subunit of SWI/SNF complex, has been recently suggested as a novel tumor suppressor in several cancers. In this study, we investigated the tumor suppressive effect of BRD7 in epithelial ovarian cancer. We analyzed the expression of BRD7 in human ovarian tissues with real-time PCR. To investigate the functional role of BRD7, we transfected ovarian cancer cells (A2780 and SKOV3) with BRD7 plasmid and checked the cell viability, apoptosis, and invasion. The activities of BRD7 in the signaling pathways associated with carcinogenesis were also tested. In addition, we used the orthotopic mouse model for ovarian cancer to evaluate tumor growth-inhibiting effect by administration of BRD7 plasmid. The BRD7 expression was downregulated in the ovarian cancer tissues compared with normal (P < 0.05), high-grade serous cancer exhibited significantly decreased expression of BRD7 compared with low-grade (P < 0.01) serous cancer. Transfection of BRD7 plasmid to A2780 (p53-wild) or SKOV3 (p53-null) ovarian cancer cells showed the tumor suppressive effects assessed by cell viability, apoptosis, and invasion assay and especially significantly decreased tumor weight in orthotopic mouse model (A2780). Moreover, we found that tumor suppressive effects of BRD7 are independent to the presence of p53 activity in ovarian cancer cells. BRD7 negatively regulated β-catenin pathway, resulting in decreased its accumulation in the nucleus. These results suggested that BRD7 acts as a tumor suppressor in epithelial ovarian cancers independently of p53 activity, via negative regulation of β-catenin pathway.

Highlights

  • Ovarian carcinoma is the fifth leading cause of cancerrelated death among females worldwide [1, 2]

  • Transfection of Bromodomain-containing protein 7 (BRD7) plasmid to A2780 (p53-wild) or SKOV3 (p53null) ovarian cancer cells showed the tumor suppressive effects assessed by cell viability, apoptosis, and invasion assay and especially significantly decreased tumor weight in orthotopic mouse model (A2780)

  • We found that tumor suppressive effects of BRD7 are independent to the presence of p53 activity in ovarian cancer cells

Read more

Summary

Introduction

Ovarian carcinoma is the fifth leading cause of cancerrelated death among females worldwide [1, 2].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call