Abstract
To be clinically efficacious, nanotherapeutic drugs need to reach disease tissues reliably and cause limited side effects to normal organs and tissues. Here, we report a proof-of-concept study on the development of a smart peptidic nanophototherapeutic agent in line with clinical requirements, which can transform its morphology from nanoparticles to nanofibrils at the tumor sites. This in vivo receptor-mediated transformation process resulted in the formation and prolonged tumor-retention of highly ordered (J-aggregate type of photosensitizer) photosensitive peptide nanofibrillar network with greatly enhanced photothermal and photodynamic properties. This strategy of "multiple daily low-intensity laser radiation after each intravenous injection of significantly low-dose of nanomaterials" demonstrated effective elimination of 4T1 orthotopic syngeneic breast cancer in mice. The technology for nanomaterial modulation based on living cell surface receptors, in this case tumor-associated α3β1 integrin, has great potential for clinical translation and is expected to improve the therapeutic efficacy against many cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.