Abstract

The aim of this study was to reveal the function of the long non-coding RNA (lncRNA) RP11-556E13.1 (RP11) and its clinical significance in hepatocellular carcinoma (HCC). LncRNA and mRNA expression profiling was performed using lncRNA and mRNA microarrays in HCC and adjacent tissues. Human tissue samples were analyzed by semiquantitative real-time polymerase chain reaction (sqRT-PCR) to evaluate the expression of RP11. Smart silencer RNA (siRNA) was used to knockdown the expression of RP11 in HCC cells. The function of RP11 was determined by some cell function experiments in HCC cells. Western blotting (WB) was performed to detect proteins that were presumably associated with these function changes. An Affymetrix Human HTA2.0 microarray was used to detect the underlying mechanism of RP11 in HCC. lncRNA RP11 was the most significantly upregulated lncRNA in HCC tissues compared with the adjacent tissues (p < 0.05, fold change = 20.24). The expression of RP11 was significantly higher in HCC tissues compared to adjacent tissues in 112 tissue pairs (p < 0.05). The higher the expression of RP11 in HCC tissues, the bigger the tumor size, the poorer the histological differentiation, and the lower the overall survival rate of the patients (all p < 0.05). After the knockdown of RP11, HCC cells displayed inhibited proliferation, increased apoptosis rate, and G1/S arrest. Moreover, the expression of cleaved PARP1 and cleaved caspase-3 was increased. GO enrichment and KEGG pathway enrichment analysis showed some important pathways that might be related to the knockdown of RP11 in HCC cells. lncRNA RP11 is an HCC-promoting gene and a potential prognostic predictor of HCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.