Abstract

A major obstacle to targeted cancer therapy is identifying suitable targets that are specifically and abundantly expressed by solid tumors. Certain bacterial strains selectively colonize solid tumors and can deliver genetically encoded cargo molecules to the tumor cells. Here, we engineered bacteria to express monomeric streptavidin (mSA) in tumors, and developed a novel tumor pre-targeting system by visualizing the presence of tumor-associated mSA using a biotinylated imaging probe. We constructed a plasmid expressing mSA fused to maltose-binding protein and optimized the ribosome binding site sequence to increase solubility and expression levels. E. coli MG1655 was transformed with the recombinant plasmid, expression of which is driven by the pBAD promotor. Expression of mSA was induced by L-arabinose 4days after injection of bacteria into mice bearing CT26 mouse colon carcinoma cells. Selective accumulation of mSA in tumor tissues was visualized by optical imaging after administration of a biotinylated fluorescent dye. Counting of viable bacterial cells was also performed. Compared with a conventional system, the novel expression system resulted in significantly higher expression of mSA and sustained binding to biotin. Imaging signals in tumor tissues were significantly stronger in the mSA-expressing group than in non-expressing group (P = 0.0005). Furthermore, the fluorescent signal in tumor tissues became detectable again after multiple inductions with L-arabinose. The bacterial counts in tumor tissues showed no significant differences between conditions with and without L-arabinose (P = 0.45). Western blot analysis of tumor tissues confirmed expression and binding of mSA to biotin. We successfully engineered tumor-targeting bacteria carrying a recombinant plasmid expressing mSA, which was targeted to, and expressed in, tumor tissues. These data demonstrate the potential of this novel tumor pre-targeting system when combined with biotinylated imaging probes or therapeutic agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.