Abstract

BackgroundRecognizing EGFR as key orchestrator of the metastatic process in colorectal cancer, but also the substantial heterogeneity of responses to anti-EGFR therapy, we examined the pattern of composite tumor kinase activities governed by EGFR-mediated signaling that might be implicated in development of metastatic disease.Patients and MethodsPoint mutations in KRAS, BRAF, and PIK3CA and ERBB2 amplification were determined in primary tumors from 63 patients with locally advanced rectal cancer scheduled for radical treatment. Using peptide arrays with tyrosine kinase substrates, ex vivo phosphopeptide profiles were generated from the same baseline tumor samples and correlated to metastasis-free survival.ResultsUnsupervised clustering analysis of the resulting phosphorylation of 102 array substrates defined two tumor classes, both consisting of cases with and without KRAS/BRAF mutations. The smaller cluster group of patients, with tumors generating high ex vivo phosphorylation of phosphatidylinositol-3-kinase-related substrates, had a particularly aggressive disease course, with almost a half of patients developing metastatic disease within one year of follow-up.ConclusionHigh phosphatidylinositol-3-kinase-mediated signaling activity of the primary tumor, rather than KRAS/BRAF mutation status, was identified as a hallmark of poor metastasis-free survival in patients with locally advanced rectal cancer undergoing radical treatment of the pelvic cavity.

Highlights

  • The multitude of more than 500 protein kinases, the kinome, represents a substantial part of the human genome, and receptor tyrosine kinases are key mediators in signaling cascades regulating central biological processes of malignancy, such as proliferation, angiogenesis, and metastasis [1,2]

  • In this study, using peptide arrays with tyrosine kinase substrates [4,5,6] to analyze the patients’ tumors at the time of diagnosis, we have found that patients with poor CRT response had significantly elevated tumor kinase activity, representing signaling mediated by VEGFR, EGFR, and phosphatidylinositol-3-kinase (PI3K)/AKT, compared to good-responding patients [7]

  • We have reported that tumor angiogenic signatures comprising PDGFR, VEGFR, and EPOR were associated with microscopic dissemination of tumor cells in bone marrow at the time of diagnosis, which secondly was correlated with heightened risk of developing metastatic disease following the course of radical treatment of the pelvic cavity [8]

Read more

Summary

Introduction

The multitude of more than 500 protein kinases, the kinome, represents a substantial part of the human genome, and receptor tyrosine kinases are key mediators in signaling cascades regulating central biological processes of malignancy, such as proliferation, angiogenesis, and metastasis [1,2]. Even with successful local treatment, a substantial number of patients will develop metastatic disease as result of early, undetected systemic dissemination of tumor cells. Within this frame of reference, our prospective non-randomized study comprising LARC patients given CRT followed by radical surgery and no further treatment offers a unique opportunity to explore the regulatory role of specific kinase signaling pathways in tumor proliferation, angiogenesis, and metastasis in a defined clinical context. We have reported that tumor angiogenic signatures comprising PDGFR, VEGFR, and EPOR were associated with microscopic dissemination of tumor cells in bone marrow at the time of diagnosis, which secondly was correlated with heightened risk of developing metastatic disease following the course of radical treatment of the pelvic cavity [8]. Recognizing EGFR as key orchestrator of the metastatic process in colorectal cancer, and the substantial heterogeneity of responses to anti-EGFR therapy, we examined the pattern of composite tumor kinase activities governed by EGFR-mediated signaling that might be implicated in development of metastatic disease

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call