Abstract
Multidrug resistance is one of the major problems in chemotherapy, and exploiting impactful targets to reverse drug resistance of most tumors remains a difficult problem. In this study, the tumor-oriented nanoparticle, BIBR1532-loaded peptide dendrimeric prodrug nanoassembly (B-PDPN), is used to assist telomerase inhibition for multidrug resistance reversal. B-PDPN possesses the characteristics of an acid-activated histidine to promote cellular uptake, a redox-sensitive poly(ethylene glycol) (PEG) layer to actualize endosomal escape and telomerase inhibitor release, and an acid sensitive chemical bond to facilitate chemotherapeutic drug release. Telomerase termination weakens the protective effect of hTERT protein on mitochondria and enhances reactive oxygen species (ROS) production, which increases DNA damage and apoptosis. The tumor-oriented nanoparticle B-PDPN achieves a broad-spectrum telomerase inhibition to combat multidrug resistance. In vivo experiments support the evidence that B-PDPN accumulates in the tumor site and reduces the expression of hTERT in tumor tissues to inhibit drug resistant tumor growth. This work introduces an innovative strategy of utilizing features of tumor-activated nanoplatform to assist telomerase termination. The nanoplatform enhances intracellular drug concentration and nucleus delivery of doxorubicin (DOX), and promotes DNA damage to combat multidrug resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.