Abstract

The majority of experiments show that tumor necrosis factor-alpha (TNF-α) inhibits osteogenic differentiation of mesenchymal stem cells and pre-osteoblasts by activated nuclear factor-kappaB (NF-κB) signaling. However, the underlying mechanisms by which NF-κB signaling inhibits osteogenic differentiation are not fully understood. The aim of the present study was to investigate whether EphB4 signaling inhibition mediates the effects of TNF-α-activated NF-κB signaling on osteogenic differentiation of pre-osteoblasts. Murine MC3T3-E1 pre-osteoblasts were treated with 10ng/mL of TNF-α. NF-κB inhibitor, pyrrolidine dithiocarbamate, was used to achieve NF-κB signaling inhibition. EphB4 signaling was activated using ephrinB2-fc. The mRNA expressions of runt related transcription factor 2 (Runx2), bone sialoprotein (BSP) and EphB4 were determined using reverse transcription-polymerase chain reaction. The protein levels of Runx2, BSP, Col Ia1, osteopontin, EphB4, p-NF-κB p65 and NF-κB p65 were evaluated using western blot assays. Alkaline phosphatase (ALP) activity in MC3T3-E1 cells was evaluated by ALP activity kit, and mineral nodule formation was evaluated by Alizarin Red S staining. TNF-α inhibited EphB4 expression, while it suppressed Runx2, BSP expression from gene and protein levels as well as ALP activity and mineral nodule formation in MC3T3-E1 cells. Activation of EphB4 signaling by ephrinB2-fc promoted osteogenic differentiation of MC3T3-E1 cells, whereas TNF-α impaired the osteogenic differentiation enhanced by ephrinB2-fc. Pyrrolidine dithiocarbamate blocked the activation of NF-κB signaling induced by TNF-α, while it prevented the downregulation of Runx2, BSP and EphB4, induced by TNF-α. TNF-α inhibits osteogenic differentiation of pre-osteoblasts by downregulation of EphB4 signaling via activated NF-κB signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call