Abstract

BackgroundPlasmodium has a complex biology including the ability to interact with host signals modulating their function through cellular machinery. Tumor necrosis factor (TNF) elicits diverse cellular responses including effects in malarial pathology and increased infected erythrocyte cytoadherence. As TNF levels are raised during Plasmodium falciparum infection we have investigated whether it has an effect on the parasite asexual stage. MethodsFlow cytometry, spectrofluorimetric determinations, confocal microscopy and PCR real time quantifications were employed for characterizing TNF induced effects and membrane integrity verified by wheat germ agglutinin staining. ResultsTNF is able to decrease intracellular parasitemia, involving calcium as a second messenger of the pathway. Parasites incubated for 48h with TNF showed reduced erythrocyte invasion. Thus, TNF induced rises in intracellular calcium concentration, which were blocked by prior addition of the purinergic receptor agonists KN62 and A438079, or interfering with intra- or extracellular calcium release by thapsigargin or EGTA (ethylene glycol tetraacetic acid). Importantly, expression of PfPCNA1 which encodes the Plasmodium falciparum Proliferating-Cell Nuclear Antigen 1, decreased after P. falciparum treatment of TNF (tumor necrosis factor) or 6-Bnz cAMP (N6-benzoyladenosine-3′,5′-cyclic monophosphate sodium salt). ConclusionsThis is potentially interesting data showing the relevance of calcium in downregulating a gene involved in cellular proliferation, triggered by TNF. General significanceThe data show that Plasmodium may subvert the immunological system and use TNF for the control of its proliferation within the vertebrate host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.