Abstract

While a number of studies have documented the neurotropism of Japanese encephalitis virus (JEV), little is known regarding the molecular mechanism of neuronal death following viral infection. The tumor necrosis factor receptor (TNFR)-associated death domain (TRADD) has been suggested to be the crucial signal adaptor that mediates all intracellular responses from TNFR-1. Using mouse (Neuro2a) and human (SK-N-SH) neuroblastoma cell lines, we have shown that the altered expression of TNFR-1 and TRADD following JEV infection regulates the downstream apoptotic cascades. Activation of TRADD led to mitochondria-mediated neuronal apoptosis. As TRADD-knockout animals or deficient cell lines are unavailable, it has been difficult to definitively address the physiological role of TRADD in diseases pathology following JEV infection. We circumvented this problem by silencing TRADD expression with small-interfering RNA (siRNA) and have found that TRADD is required for TNFR-1-initiated neuronal apoptosis following in vitro infection with JEV. Interestingly, siRNA against TRADD also decreased the viral load in Neuro2a cells. Furthermore, siRNA against TRADD increased the survival of JEV-infected mice by altering the expression of pro apoptotic versus antiapoptotic molecules. These studies show that the engagement of TNFR-1 and TRADD following JEV infection plays a crucial role in neuronal apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.