Abstract

Pressure overload is accompanied by cardiac myocyte apoptosis, hypertrophy, and inflammatory/fibrogenic responses that lead to ventricular remodeling and heart failure. Despite incomplete understanding of how this process is regulated, the upregulation of tumor necrosis factor (TNF)-alpha after aortic banding in the myocardium is known. In the present study, we tested our hypothesis that TNF-alpha regulates the cardiac inflammatory response, extracellular matrix homeostasis, and ventricular hypertrophy in response to mechanical overload and contributes to ventricular dysfunction. C57/BL wild-type mice and TNF-knockout (TNF-/-) mice underwent descending aortic banding or sham operation. Compared with sham-operated mice, wild-type mice with aortic banding showed a significant increase in cardiac TNF-alpha levels, which coincided with myocyte apoptosis, inflammatory response, and cardiac hypertrophy in week 2 and a significant elevation in matrix metalloproteinase-9 activity and impaired cardiac function in weeks 2 and 6. Compared with wild-type mice with aortic banding, TNF-/- mice with aortic banding showed attenuated cardiac apoptosis, hypertrophy, inflammatory response, and reparative fibrosis. These mice also showed reduced cardiac matrix metalloproteinase-9 activity and improved cardiac function. Findings from the present study have suggested that TNF-alpha contributes to adverse left ventricular remodeling during pressure overload through regulation of cardiac repair and remodeling, leading to ventricular dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.