Abstract
Osteoblasts or bone marrow stromal cells are required as supporting cells for the in vitro differentiation of osteoclasts from their progenitor cells. Soluble receptor activator of nuclear factor-kappaB ligand (RANKL) in the presence of macrophage colony-stimulating factor (M-CSF) is capable of replacing the supporting cells in promoting osteoclastogenesis. In the present study, using Balb/c-derived cultures, osteoclast formation in both systems-osteoblast/bone-marrow cell co-cultures and in RANKL-induced osteoclastogenesis-was inhibited by antibody to tumor necrosis factor-alpha (TNF-alpha), and was enhanced by the addition of this cytokine. TNF-alpha itself promoted osteoclastogenesis in the presence of M-CSF. However, even at high concentrations of TNF-alpha the efficiency of this activity was much lower than the osteoclastogenic activity of RANKL. RANKL increased the level of TNF-alpha mRNA and induced TNF-alpha release from osteoclast progenitors. Furthermore, antibody to p55 TNF-alpha receptors (TNF receptors-1) (but not to p75 TNF-alpha receptors (TNF receptors-2) inhibited effectively RANKL- (and TNF-alpha() induced osteoclastogenesis. Anti-TNF receptors-1 antibody failed to inhibit osteoclastogenesis in C57BL/6-derived cultures. Taken together, our data support the hypothesis that in Balb/c, but not in C57BL/6 (strains known to differ in inflammatory responses and cytokine modulation), TNF-alpha is an autocrine factor in osteoclasts, promoting their differentiation, and mediates, at least in part, RANKL's induction of osteoclastogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.