Abstract

Increased expression of transforming growth factor (TGF)-beta(1) and tumor necrosis factor (TNF)-alpha are thought to play important roles in the development of pulmonary fibrosis. We recently reported that TNF-alpha upregulates TGF-beta(1) expression in primary mouse lung fibroblasts (MLFs), a key cell population in fibrogenesis. In the present study, we have investigated signal transduction pathways involved in TNF-alpha upregulation of TGF-beta(1) in both primary MLFs and the Swiss 3T3 fibroblast cell line. Treatment of fibroblasts with TNF-alpha resulted in a significant increase in TGF-beta(1) protein as measured by ELISA. The increase in protein was preceded by a 200-400% increase in TGF-beta(1) mRNA detected by quantitative, real-time, reverse transcriptase-polymerase chain reaction. Western blot analysis showed that TNF-alpha activated the extracellular signal-regulated kinase (ERK), and inhibitors of the ERK-specific mitogen-activated protein kinase pathway (PD98059 or U0126) blocked TNF-alpha induction of TGF-beta(1) mRNA and protein. mRNA stability experiments showed that TNF-alpha increased the half-life of TGF-beta(1) mRNA to more than 24 h compared with approximately 15 h in unstimulated cells. Expression of constitutively active MEK1 that selectively phosphorylates ERK was sufficient for TGF-beta(1) mRNA stabilization in Swiss 3T3 fibroblasts. These results indicate that TNF-alpha activates the ERK-specific mitogen-activated protein kinase pathway leading to increased TGF-beta(1) production in fibroblasts, primarily via a post-transcriptional mechanism that involves stabilization of the TGF-beta(1) transcript.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.