Abstract
Mrp3(Abcc3) is markedly induced following bile duct ligation (BDL) in the rat and in some human cholestatic liver diseases and is believed to ameliorate liver injury in this setting. Recently, the orphan nuclear receptor fetoprotein transcription factor/cholesterol-7alpha-hydroxylase promoter factor (CPF/FTF/Lrh-1) has been shown to activate Mrp3 expression. However, whether inflammatory cytokines or elevated bile acid levels increased Lrh-1/Mrp3 expression in obstructive cholestasis was not known. We hypothesized that induction of Mrp3 would be associated with Lrh-1 up-regulation and would require intact cytokine signaling. Male tumor necrosis factor (Tnf) receptor I (Tnfr-/-) mice and C57BLJ wild type (WT) controls were subjected to sham surgery or bile duct ligation. HepG2 cells were treated with bile acids or cytokines. Immunoblot assay and real time reverse transcriptase-PCR were used to determine expression of MRP3/Mrp3, CPF/Lrh-1, Mrp2, and Bsep. CPF/Lrh-1 DNA binding to the MRP3/Mrp3 promoter was assessed using electrophoretic mobility shift assay, and promoter activity was determined by luciferase assay. Total bile acids and lactate dehydrogenase were measured using colorimetric assays, and cytokine abundance was determined by enzyme-linked immunosorbent assay. Lrh-1 and Mrp3 were significantly induced after BDL in WT but not Tnfr-/- mice. This was associated with more severe hepatocellular necrosis in Tnfr-/- mice. Lrh-1 binding to the Mrp3 promoter increased after BDL in WT but not in Tnfr-/- mice. Tnfalpha treatment of HepG2 cells also up-regulated CPF and MRP3, increased CPF binding to the MRP3 promoter, and up-regulated MRP3 promoter activity. These results indicate that induction of Mrp3 after BDL is due to Tnfalpha-dependent up-regulation of Lrh-1. They provide strong evidence that induction of Mrp3 plays a significant role in hepatocyte protection during obstructive cholestasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.